方程的意义_初中数学《方程的意义》教学反思

作文素材 编辑: http://www.kuaidianseo.com

1、方程的意义

教学目标: (1)使学生理解方程概念,感受方程思想。 (2)经历从生活情景到方程模型的建构过程。 (3)培养学生观察、描述、分类、抽象、概括、应用等能力。 教学过程: 一、创设情景,抽象数学模式。 1.出示实物天平。 (实物天平比较小,用屏幕上的天平来模拟实验。) 2.两个大苹果和一个小西瓜,它们的重量我们还不知道,如果要分别放在两个盘上,猜猜看,天平可能会哪边重呢? (说明两边的重量可能有三种不同的关系。) 用式子描述重量之间的相等关系。 3.一场篮球比赛,红、蓝两队打得还挺激烈的,你能来描述两队的情况吗? 用式子表示两队比分的关系。 红队的教练啊也关注了这个情况,马上叫了一次暂停,并作了战术上的调整,一上场的一段时间里,只有红队连续得了χ分,请你猜一猜,两队的情况会怎样呢? 用式子来表示比分的三种关系。 4.创设四个情景。 (1)每个情景中数量之间有什么关系? (2)你能用关系式清晰地来描述吗? 二、引导分类,概括方程概念。 刚才我们对情景的描述得到了很多式子。 200+200=400 18 < 23 18+χ<23 18+χ>23 18+χ=23 280 > 100 120 < 4χ 25+χ=70 22y+720=1050 1.学生尝试第一次分类。 可能有几种不同的分法。 (1) 看是否是等式。 (2) 看是否含有未知数。 …… 2.学生尝试第二次分类。 得到四组不同的式子。 3.描述每一组的特征。 4.引导概括方程概念。 含有未知数的等式叫方程。 三、抓等量关系,体会方程本质。 1.演示动态平衡。有等量关系,能用方程表示 2.出示情景(没有等量关系,不能用方程表示。) 出示情景120元正好买2个玩具企鹅。(有等量关系,能用方程表示) 3.通过今天这节课,你学到了什么呢? 四、联系实际,应用与拓展。 1.周老师从无锡到徐州来上课。 (1)线段图。 (2)我乘火车从无锡站开出,每小时行χ千米,7小时到达徐州站。无锡站到徐州站的铁路长525千米。 (3)到了徐州站,我买了3枝圆珠笔,每枝χ元,付出20元,找回2元。 2.情景图。 本届奥运会上,中国台北队获得了χ枚金牌,中国队获得了32枚,日本队获得y枚。男孩说:“中国台北队金牌数的16倍正好等于中国队的金牌数。”女孩说:“日本队的金牌数等于中国台北队的8倍。” 3.开放题。 小芳集邮共260张,小明集邮共300张。怎样才能使两人的集邮张数一样多? (用方程表示) “方程的意义”教学设计的说明 在新课程背景下,学生概念的形成应具有更大的涵盖面、影响力和迁移性,由此通过自我理解、生成、连接,形成自己的知识系统。本课《方程的意义》的教学设计,基于对数学概念及概念教学的再把握,相对于传统的教学,有了比较大的变化。这是我们的尝试,也是一种思考和探索。 整体的把握: 数学概念不仅是局部的,而且是全局的;不仅是静态的,而且是动态的;不仅是学科的,而且是儿童的。所以对方程概念及其教学应从多个层面加以把握: 形式层面——含有未知数的等式(是关系的一种)。这是一种静态的结论。 发现层面——经历方程模式的生成过程,它来源于现实又回到现实,寻找等量关系并用方程来表示。这是一个动态的过程。 直观具体层面——举出正例或反例。 直觉层面——一种数学的意识、一种方程的感觉。 这样才能形成一个有力的认知结构(其中包含知识结构、方法结构和经验结构) 目标的把握: 经历从现实问题到方程概念建立的过程,(方程是从现实生活到数学的一个提炼过程,一个用数学符号提炼现实生活中特定关系的过程。)体会方程是刻画现实世界的数学模型。 渗透方程思想的三个方面:设立未知量,将其当作已知数,参与到问题中事实的表达;建立等量关系,用方程表示(方程是说明两件事情是等价的);区别未知量与己知量,只要经过运算,就可用已知数表示未知量。 过程的把握: 统揽全局基础上的局部聚集,突出“知识胚胎”的生成。学生的认识不是线性发展的,而是整体式推进的。各个部分知识的拼装不可能产生真正意义上的有生命的知识,只有胚胎式的整体推进才能领略到知识生命的意蕴。所以概念教学须克服原有的分割式、部分式教学,突出“知识胚胎”的生成。传统教学注重从部分到整体,形成一个结构。现代教学应更重视从整体到部分再到整体,形成更有意义和活力的结构。 本课方程概念的教学,力图围绕目标形成一个包括知识技能、思维方式和方程思想的整体结构,在其后的教学中再对方程的各个部分进行深化,形成所谓同心圆结构的知识生成模型,这是儿童认识的规律,也许可以解决数学教学中知识太“散”的问题。 经历“问题情景——数学模型——解释与应用”的全过程。从“问题情景——数学模型”展开数学化和结构化的过程。再从“数学模型——解释与应用”展开结合现实寻找意义的过程。方程整体概念生成必须经历这样的过程,才能使目标的各个部分协调地组合在一起,产生一种数学的意识和方程的观念。

2、初中数学《方程的意义》教学反思

《方程的意义》这是一块崭新的知识点,是在学生熟悉了常见的数量关系,能够用字母表示数的基础上教学,但理解起来有一定的难度。数学教学过程,首先应该是一个让学生获得丰富情感体验的过程。要让学生乐学、好学,让学生在教学过程中获得积极的情感体验,下面就结合我所执教的<<方程的意义>>这节课,谈谈我在教学中的做法和看法。

回顾我的教学,我认为有如下几个特点。

一、设置情景引导,促进学生的自主学习

在执教,《方程的意义》一课时通过天平的演示: 认识天平,同学们说天平的作用、用法。在这个环节要充分发挥低视的动手能力,但要注意对学困生的引导,在这个方面应该给学困生更多的机会去接触天平,起码让他们对天平建立起一个初步的认识。

二、合作交流,总结概括

通过对天平的观察得出等式的概念,接着应让学生自己独立思考。通过比较等式与方程,以及不等式与方程的不同,得出方程的概念,体现学生自主学习的能力,而不应该替学生很快的说出答案,在将出方程的概念后,应该让学生通过变式训练明白不仅x可以表示未知数,其他的字母都可表示未知数。在此教学过程中,教师应充当一个导游的角色,站在知识的岔路口,启发诱导学生发现知识,充分发挥学生的学习潜能,将有一定难度的问题放到小组中,采用合作交流的方式加以解决,逐步的引导学生对问题的思考和解决向纵深发展,有利于培养学生的倾听习惯和合作意识。

三、回归生活,体会方程

在建立方程的意义以后,设计了根据情境图写出相应的方程,并在最后引入生活实例,从中找出不同的方程。这一过程学生在生活实际中寻找等量关系列方程,进一步体会方程的意义,加深了对方程概念的理解,同时也为以后运用方程知识解决实际问题打下基础。

从学生已有的知识储备来看,他们会用含有字母的式子表示数量,大多数学生知道等式并能举例,向学生提供表示天平左右两边平衡的问题情境,大部分学生运用算术方法列式。但是,学生已有的解决数学问题的算术法解题思路对列方程会造成一定的干扰。对于利用天平解决实际问题较感兴趣,但是,要求学生把看到的生活情境转化成用数学语言、用关系时表示时可能存在困难,对于从各种具体情境中寻找发现等量关系并用数学的语言表达则表现出需要老师引导和同伴互助,需要将独立思考与合作交流相结合。

3、张红梅《方程的意义》教学反思

《方程的意义》教学反思张红梅

《方程的意义》是学习代数的基础,是在学生熟悉了常见的数量关系,能够用字母表示数的基础上教学,但理解起来有一定的难度。在“含有未知数的等式,称为方程”的这一概念获取过程中,我首先是让学生通过观察天平“平衡现象→不平衡→平衡”三个直观活动,抽象出相关的数学式子,再通过预习说出方程的概念,即由“等式→未知数→方程”的过程,然后通过必要的练习巩固加深对方程概念的理解和应用。通过这一系列的观察、思考、突破本课的重难点。在这几个环节中有以下特点:

1. 用天平创设情境直观形象,有助学生理解式子的意思

等式是一个数学概念。如果离开现实背景出现都是已知数组成的等式,虽然可以通过计算体会相等,但枯躁乏味,学生不会感兴趣。如果离开现实情境出现含有未知数的等式,学生很难体会等式的具体含义。在教学方程的意义时,为了让学生体会方程的本质特征,我借住天平称物体的情境,并通过连环画的形式,可以帮助学生理解式子的意思,也充分利用了教材的主题图。

2、 对方程的认识从表面趋向本质

要体会方程是一种数学模型。“含有未知数的等式”描述了方程的外部特征,并不是本质特征。方程用等式表示数量关系,它由已知数和未知数共同组成,表达的相等关系是现象、事件中最主要的数量关系。要让学生体会方程的本质特征。在教学过程中,通过观察天平的相等关系(如左盘中是100克的杯子和x克水右盘中是250克砝码,天平平衡,解释方程的具体含义),感受方程与日常生活的联系,体会方程用数学符号抽象地表达了等量关系,对方程的认识从表面趋向本质。

3.在“看”“说”和“写”中体会意义

当方程的意义建立后,我让学生观察前面几组式子判断它们是不是方程,通过判断说明这些式子为什么是“方程”,为什么“不是方程”,又让学生自己写出一些方程,展示自己写的方程。通过练习题体会方程与等式的关系,加深对方程意义的理解。但在这个操作过程中我点播的不是太到位。让学生自己写出一些方程,展示自己写的方程。

本节课最大的不足:应让学生在分类比较中认识方程的主要特征,学生通过观察和操作得到了很多不同的式子,然后让学生把写出的式子进行分类。我相信经过探索和交流,认识方程的特征,归纳出方程的意义。

不足之处:包括解决问题的办法、对策,那么自己就会在教学过程中“吃一堑,长一智”,不断积累经验,使自己的教学过程更加优化,更加贴近学生。当然,课堂教学过程中有许多地方需要我去关注:如问题情境的创设;学习活动的组织;小组合作学习;关注学生情感、态度、价值观;学生学习的兴趣……。对它们进行回顾、梳理,并对其进行深刻的反思、探究和剖析,使之成为以后教学时应当吸取的教训。同时,针对以上几个问题,找到了哪些解决的办法和教学的新思路,写出改进的策略和教学的新方案。从而,不断强化自己有效教学。

4、方程的意义教案

教学内容:

教科书第1页的例1、例2和试一试,完成练一练和练习一的第1~2题。

教学目标:

理解方程的含义,初步体会等式与方程的联系与区别,体会方程就是一类特殊的等式。

教学重点:

理解并掌握方程的意义。

教学难点:

会列方程表示数量关系。

教学过程:

一、教学例1

1.出示例1的天平图,让学生观察。

提问:图中画的是什么?从图中能知道些什么?想到什么?

2.引导

(1)让不熟悉天平不认识天平的学生认识天平,了解天平的作用。

(2)如果学生能主动列出等式,告诉学生:像50+50=100这样的式子是等式,并让学生说说这个等式表示的意思;如果学生不能列出等式,则可提出你会用等式表示天平两边物体的质量关系吗?

二、教学例2

1.出示例2的天平图,引导学生分别用式子表示天平两边物体的质量关系。

2.引导:告诉学生这些式子中的x都是未知数;观察这些式子,说一说写出的式子中哪些是等式,这些等式都有什么共同的特点。

3.讨论和交流:写出的式子中,有几个是等式,有几个不是,而写出的等式都含有未知数,在此基础上,揭示方程的概念。

三、完成练一练

1.下面的式子哪些是等式?哪些是方程?

2.将每个算式中用图形表示的未知数改写成字母。

四、巩固练习

1.完成练习一第1题

先仔细观察题中的式子,在小组里说说哪些是等式,哪些是方程,再全班交流。要告诉学生,方程中的未知数可以用x表示,也可以用y表示,还可以用其他字母表示,以免学生误以为方程是含有未知数x的等式。

2.完成练习一第2题

五、小结

今天,我们学习了什么内容?你有哪些收获?需要提醒同学们注意什么?还有什么问题?

六、作业

完成补充习题

板书设计:

方程的意义

x+50=100

x+x=100

像x+50=150、2x=200这样含有未知数的等式叫做方程

5、猜你喜欢: